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Measurement and analysis of elastic and anelastic
properties of alumina and silicon carbide

A. WOLFENDEN
Advanced Materials Laboratory, Mechanical Engineering Department, Texas A&M
University, College Station, TX 77843-3123, USA

Measurements of dynamic Young’s modulus, E, and damping as a function of temperature,

T, were made for alumina and silicon carbide. The Young’s modulus data were compared

with some from the literature, and analysed in terms of a theoretical framework relating the

Debye temperature, hD, with the elastic constants. For both materials this analysis yielded

a ratio T0/hD which was near 0.4, where T0 is an empirical fitting constant for the plot of

(E(0)!E)/T versus 1/T (E(0) is the value of E at 0 K). The analysis of the damping data in

terms of an Arrhenius type dependence led to effective activation energies near kT, where

k is Boltzmann’s constant.
1. Introduction
The elastic properties of ceramics have a wide range of
applications for basic research and are important for
technological applications. They offer opportunities
for a direct measurement of the strength of inter-
atomic bonds; they are pertinent to the theoretical
strength of crystals; they are interrelated with specific
heat, thermoelastic stresses, expansion coefficients, lat-
tice dynamics and properties of point defects and
dislocations. For design in engineering, the elastic
moduli are needed for calculations of stress and strain
for static or dynamic loading conditions. The elastic
properties are needed also in the design of transducers,
such as those used in non-destructive testing. Regard-
ing the elastic modulus of a material as a complex
term (in the mathematical sense), it is noted that the
real part (i.e. the elastic part) of the modulus is the
Young’s or shear modulus, while the imaginary part of
the modulus is the anelastic component, usually
termed the damping. The damping of a material con-
trols the rate at which vibrations are dissipated and is
obviously of technological interest. For basic research,
measurements of damping can provide information on
the mechanisms by which point defects, dislocations
or interfaces dissipate vibrational energy.

In this paper, the results of measurements of dy-
namic Young’s modulus, E, and damping, Q~1, as
a function of temperature, ¹, for alumina and silicon
carbide are presented, compared with some data from
the literature, and analysed in terms of a theoretical
framework, part of which dates back to Einstein’s
[1, 2] original relationship between the characteristic
frequency of a material and its compressibility (i.e. the
relation between the Debye temperature, h

D
, and the

elastic constants). For both materials the analysis of
the values of Young’s modulus yields a ratio ¹ /h
0 D
which is near 0.4, where ¹

0
is an empirical fitting

0022—2461 ( 1997 Chapman & Hall
constant for the plot of (E(0)!E )/¹ versus 1/¹ (E(0)
is the value of E at 0 K). The analysis of the damping
data in terms of an Arrhenius type dependence leads
to effective activation energies near k¹, where k is
Boltzmann’s constant.

2. Materials and experimental procedure
2.1. Materials
Alumina rods of purity 99.8% and diameter 3.2 mm
were obtained from the McDanel Refractory Com-
pany. The silicon carbide was obtained from the
Norton Company and is known as NC 203. Speci-
mens of alumina were cut to lengths near 25 mm,
and specimens of SiC were cut to a size of
50 mm]4 mm]3 mm, in both cases with a diamond
cut-off saw. The ends of the specimens were made flat
and parallel by polishing with a series of SiC papers.

2.2. Experimental procedure
The use of the PUCOT (piezoelectric ultrasonic com-
posite oscillator technique) for measurements of dy-
namic Young’s modulus and damping requires that
the mass density (q) of the materials be determined.
The density of each specimen at room temperature
was found by the Archimedes technique. The values of
density for high temperatures were adjusted by use of
the coefficients of expansion of the specimen materials.

The PUCOT consisted of two a-quartz piezoelec-
tric crystals of the same frequency, glued together with
cyanoacrylate glue and attached to a jig. For the
specimens of alumina, a frequency of 200 kHz was
suitable, while for the SiC specimens a frequency of
120 kHz was used. The drive crystal (D) and the gauge
crystal (G) were connected electrically to a closed loop

crystal driver, and the gauge crystal was connected
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also to a frequency counter. The crystal driver pro-
vided an alternating drive voltage (»

$
) to excite the

crystals to resonance with a standing wave in the
longitudinal mode. The gauge crystal detected
the response of the vibration as a voltage »

'
. The

resonant period s
DG

of the crystals was measured with
the frequency counter. For measurements of Young’s
modulus (E ) and damping (Q~1) at room temper-
ature, the specimen (S) of resonant length (¸

4
) was

glued with cyanoacrylate glue to the bottom of the
gauge crystal, the system was adjusted to resonate,
and the values of »

$
, »

'
and s

DGS
(the resonant period

of the DGS combination) were noted. From the
masses (m ) of the various components in the system
(m

DG
and m

S
), the voltages »

$
and »

'
, the periods

s
DG

and s
DGS

, ¸
4
and q, the values of E, Q~1 and strain

amplitude were determined. In all cases the strain
amplitude was near 10~7 and was well within the
elastic region of the stress—strain curve for the
materials.

For measurements of E and Q~1 at elevated tem-
perature, it was necessary to tune a series of fused
quartz spacer rods (Q) to resonate at the appropriate
frequency and temperatures, i.e. to choose the length
of the spacer rod such that s

DGQ
"s

DG
at the temper-

ature of interest. The spacer rod was attached to the
bottom of the gauge crystal with cyanoacrylate glue
for the tuning. After the tuning process, the specimen
was attached to the bottom of the spacer rod with
a ceramic glue, the glue was allowed to dry for 24 h,
and the DGQS assembly was positioned vertically
over the tube furnace such that the specimen was near
the middle of the furnace and part of the rod was in the
furnace, and the crystals were above the top of the
furnace. The crystals were maintained at room tem-
perature by a small electric fan. Finally, the system
was adjusted for resonance, and the values of »

$
,

»
'

and s
DGQS

were noted. From the masses of the
various components in the system (m

DG
, m

DGQ
, m

DGQS
with ceramic glue, and m

S
), the voltages »

$
and »

'
, the

periods s
DG

and s
DGQS

, the expansion coefficient, ¸
4

(corrected by the use of the expansion coefficient) and
q, the values of E, Q~1 and strain amplitude were
determined for temperature ¹. Experiments were car-
ried out at temperatures up to 1473 and 1322 K for the
alumina and SiC, respectively. Further details of the
PUCOT are given elsewhere [3, 4].

3. Results and discussion
3.1. Young’s modulus
The measured values of the dynamic Young’s
modulus, E, and the mechanical damping, Q~1 as
a function of temperature, ¹, are presented in Table I.
Plots of E versus ¹ for alumina and silicon carbide are
shown in Figs 1 and 2, respectively. The data in Fig. 1
have been fitted to a parabola while those in Fig. 2
have been fitted to a straight line. The equations and
correlation coefficients, R, arising from the regression
analyses are given in Table II. Plots of E versus ¹ for
alumina taken from the paper by Fukuhara and
Yamauchi [5] (referred to as FY) and from the paper

by Wachtman et al. [6] (referred to as W et al.) are
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TABLE I Experimentally determined values of dynamic Young’s
modulus and damping for Al

2
O

3
and SiC

Al
2
O

3
SiC

¹ (K) E (GPa) 104]Q~1 ¹ (K) E (GPa) 104]Q~1

298 436 9 293 450 4.1
613 402 24 633 434 1.4
619 384 9 787 418 15.0
663 379 10 1108 430 34.5
743 380 4 1322 414 125
763 377 4

1034 363 9
1073 357 10
1218 289 244
1247 283 234
1293 277 234
1373 264 92
1413 256 97
1449 251 101
1463 248 103
1473 246 105

Figure 1 The temperature dependence of Young’s modulus for
alumina (present data).

Figure 2 The temperature dependence of Young’s modulus for sili-
con carbide (present data).

presented in Figs 3 and 4, respectively. In both of these
figures the data have been fitted to parabolas. The
results of these regression analyses appear in Table II
also. The correlation coefficients fall in the range

!0.972 to !0.986. A comparison of the curves in



TABLE II A listing of the analytical parameters for the curves of E versus ¹, (E (0)!E)/¹ versus ¹~1 and Q~1 versus ¹~1 for Al
2
O

3
and SiC

Al
2
O

3
SiC

E versus ¹ curves (Figs 1—5)
Present data:

E"438.4!0.01588¹!0.00007926¹2 (GPa, K) E"453.3!0.02913¹
Correlation coefficient, R"!0.972 R"!0.823

From data of FY [5]: From the data of J et al. [7]:
E"410.3!0.02341¹!0.000007985¹2 E"406.0!0.01429T
R"!0.984 R"!0.970

From data of W et al. [6]:
E"470.7!0.01314¹!0.00001713¹2

R"!0.986
(E(0)!E)/¹ versus ¹~1 curves (Figs 8!11, 14 and 15)

From data of: From data of:

Present FY [5] W et al. [6] Present J et al. [7]

E(0)(K) "438 410 471 453 406
R "!0.893 !0.322 !0.987 !0.626 !0.470
b(GPa K~1) "0.270 !0.0331 0.0382 0.0455 0.0161
¹

0
(K) "996 69 256 397 67

Q~1 versus ¹~1 curves (Figs 16—21)

From data of
Present FY[5] Present

All data R "!0.502 !0.880 !0.563
H (eV/atom) "0.11 0.08 0.09

RT! datum R "!0.631 !0.954 !0.824
excluded H (eV/atom) "0.27 0.12 0.43
!RT denotes room temperature.
Figure 3 The temperature dependence of Young’s modulus for
alumina (after FY [5]).

Figs 1, 3 and 4 reveals that while the values of E near
room temperature are near 440 GPa for all three sets
of results, at temperatures beyond 1000 K the present
data are lower than those of the other two sets. Differ-
ences in the measurement techniques and in the purity
of the specimen materials may account for this
divergence.

A plot of E versus ¹ for SiC from the paper by
Jaminet et al. [7] (referred to as J et al.) is shown in
Fig. 5. The data points have been fitted to a straight
line, and the equation and the correlation coefficient,
R, from the regression analysis are listed in Table II.

The values of Young’s modulus for the reaction
Figure 4 The temperature dependence of Young’s modulus for
alumina (after W et al. [6]).

bonded SiC from Coors [7] are roughly 35 GPa lower
than those for the NC 203 SiC.

It is interesting to note that the curves of E versus
¹ in Figs 1, 3 and 4 for alumina show a flattening out
as the temperature approaches 0 K. The temperature
dependence of elastic constants has been discussed in
terms of non-linear lattice dynamics by Wachtman
[8]. In that discussion it was pointed out that elastic
constants vary with temperature because of thermal
expansion. This can be attributed to the fact that both
elasticity and thermal expansion depend on non-linear
terms in the interatomic potential energy. The curves

in these figures can be regarded as having a transition

2277



Figure 5 The temperature dependence of Young’s modulus for sili-
con carbide (after J et al. [7]).

Figure 6 The ratio of Young’s modulus to temperature as a func-
tion of reciprocal temperature for alumina (present data).

Figure 7 The ratio of Young’s modulus to temperature as a func-
tion of reciprocal temperature for alumina (after FY [5]).

from zero slope at 0 K to an essentially linear decrease
with increasing temperature. Such behaviour would
be expected to conform to an equation of this form:
E"E(0)!b¹ exp(!¹
0
/¹ ) (1)
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Figure 8 The ratio of Young’s modulus to temperature as a func-
tion of reciprocal temperature for alumina (after W et al. [6]).

Figure 9 (E(0)!E)/¹ plotted as a function of reciprocal temper-
ature for alumina, where E(0)"438 GPa.

Figure 10 (E(0)!E)/¹ plotted as a function of reciprocal temper-

ature for alumina, where E(0)"410 GPa (after FY [5]).



Figure 11 (E(0)!E)/¹ plotted as a function of reciprocal temper-
ature for alumina, where E(0)"471 GPa (after W et al. [6]).

TABLE III Values of the Debye temperature h
D

and the charac-
teristic temperature ¹

0

Al
2
O

3
SiC

Data source h
D

(K) ¹
0

(K) h
D

(K) ¹
0

(K)

[12—14] 607
[15] 862
[16] 903
[17] 937
(ab)0.5! 1196$10
W et al. [6] 1045
AVG. 826 975
Present 996 397
Reported 309
by W et al. [6] 312
From data 69
of FY [5]
From data 256
of W et al. [6]
From data 67
of J et al. [7]
AVG. 388 232
(¹

0
AVG/h

D
AVG 0.47 0.24)

! a and b are the values of h
D

for Si and C (645$5 and 2219$20 K,
respectively) [10].

in which E(0) is the value of Young’s modulus at 0 K,
and b and ¹

0
are empirical constants [6]. Anderson

[9] showed that for data at high temperatures,
¹

0
corresponds to approximately half the Debye

temperature (h
D
/2).

The analysis of the E versus ¹ data for alumina in
the context of Equation 1 started by making plots of
(E/¹ ) versus 1/¹ as shown in Figs 6—8 for the present
data, and for the data of FY and W et al., respectively.
The convergence to linearity at the end of the plot
corresponding to the high temperatures is seen clearly
in Figs 6 and 7. The analytical procedure continued
with plots of (E(0)!E )/¹ versus 1/¹, as shown in
Figs 9—11, where the values of E (0) of 438, 410 and
471 GPa (for the present case, and for the cases of FY
and W et al., respectively) were obtained from the
results of the regression analyses documented in Table

II. The results of the regression analyses of Figs 9—11
are presented also in Table II. The curves in Fig. 9 and
11 fit well to straight lines, with correlation coefficients
R of !0.893 and !0.987, respectively. There is more
scatter in the data of FY, yielding an R value of
!0.322. From the analysis we arrive at the following
values for the empirical constants b and ¹

0
: 0.270,

0.0331 and 0.0382 GPa K~1; 996, 69 and 256 K (for
the present case, for the cases of FY and of W et al.,
respectively). Two of the values for b agree quite well,
while there is a spread in the values of ¹

0
. The values

of ¹
0

are compiled in Table III along with two values
(309 and 312 K) reported by W et al. [6]

To complete the analysis of the Young’s modulus
data for alumina, we need a value for the Debye
temperature. Wachtman et al. [6] list a value of
1045 K for h

D
. We have calculated a value of h

D
for

alumina using the computational method of Wolfen-
den and Harmouche [11] and the elastic constants
reported by Mayer and Hiedemann [12—14]. This
calculated value is 607 K. Thus, in Table III we list the
average of these two values of the Debye temperature
(average"826 K) and the average of the ¹

0
values for

alumina (average"388 K), and find that the ratio
¹

0
/h

D
is 0.47. This result agrees well with that found

by Anderson [9] for data on oxides at high
temperatures.

Corresponding analyses of the present E versus
¹ data and those of Jaminet et al. [7] in Figs 2 and
5 for SiC were made. Figs 12 and 13, and 14 and 15
show, respectively, the plots of E/¹ versus 1/¹ and
(E(0)!E )/¹ versus 1/¹, where the values of E (0) of
453 and 406 GPa were obtained from the regression
analyses of Figs 2 and 5. As was the case with the
results for alumina, the convergence to linearity at the
end of the plot corresponding to the high temper-
atures is seen in Fig. 12 for SiC. The convergence is not
so obvious in Fig. 13. The plots in Figs 14 and 15 have
some scatter with a correlation coefficient R of
!0.626 and !0.470. The values of b and ¹

0
to fit

with Equation 1 are 0.0455 and 0.0161 GPa K~1, and
397 and 67 K for SiC. Values of the Debye temper-
ature for SiC were calculated two different ways: one
calculation was done with the method of Wolfenden
and Harmouche [11] using the elastic constants data
of Tolpygo [15], Martin [16] and Arlt and Schodder
[17]; the other calculation was simply to take the
harmonic mean of the h

D
values for Si and C (dia-

mond) listed by Konti and Varshni [10]. The
calculated values of the Debye temperature were 862,
903, 937 and 1196$10 K, respectively. These values
are tabulated in Table III, along with their average
value of 975 K. Thus, the ratio ¹

0
/h

D
is 0.24 for SiC.

This result is somewhat smaller than that found by
Anderson [9] for elastic modulus data at high temper-
atures. The smaller result may be due to the restricted
number (2) of values for ¹

0
and to their wide range

(397 and 67 K).

3.2. Damping
Plots of Q~1 versus ¹~1 on log—linear axes for
alumina and silicon carbide are shown in Figs 16 and

17, respectively. The data in these figures have been
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Figure 12 The ratio of Young’s modulus to temperature as a func-
tion of reciprocal temperature for silicon carbide (present data).

Figure 13 The ratio of Young’s modulus to temperature as a func-
tion of reciprocal temperature for silicon carbide (data from J et al.
[7]).

Figure 14 (E(0)!E )/¹ plotted as a function of reciprocal temper-
ature for silicon carbide, where E(0)"453 GPa (present data).

fitted to straight lines. The correlation coefficients, R,
arising from the regression analyses are given in Table
II, and are !0.502 and !0.563, respectively. Clearly,
there is considerable scatter in the data. A plot of Q~1
versus ¹~1 for alumina taken from the paper by
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Figure 15 (E(0)!E)/¹ plotted as a function of reciprocal temper-
ature for silicon carbide, where E(0)"406 GPa (data from J et al.
[7]).

Figure 16 Damping as a function of reciprocal temperature for
alumina (present data).

Figure 17 Damping as a function of reciprocal temperature for
silicon carbide (present data).

Fukuhara and Yamauchi [5] is presented in Fig. 18.
Again the data have been fitted to a straight line. The
result of the regression analysis appears in Table II
also. The correlation coefficient is !0.880. A com-

parison of the values in Figs 16 and 18 reveals that



Figure 18 Damping as a function of reciprocal temperature for
alumina (data from FY [5]).

Figure 19 Selected data: damping as a function of reciprocal tem-
perature for alumina (present data).
Figure 20 Selected data: damping as a function of reciprocal tem-
perature for alumina (data from FY [5]).
Figure 21 Selected data: damping as a function of reciprocal
temperature for silicon carbide (present data).

near room temperature the two sets of data are in
close agreement, but at the higher temperatures the
data differ by a factor near three. Again, it is likely that
differences in the measurement techniques and in the
purity of the specimen materials contribute to this
divergence.

Following the notion that the elastic properties
(Young’s modulus) of these ceramic materials can be
assessed in terms of high temperature data and low
temperature data (see Section 3.1), we have attempted
to see if the same division can be applied to the
anelastic data, i.e. the damping results. Accordingly,
the average value of ¹

0
for alumina (388 K) has been

taken as the temperature for the division of the data.
Thus, from Figs 16 and 18 we have deleted the data
obtained at room temperature and have reproduced
the graphs in Figs 19 and 20. Interestingly, there are
improvements in the fits to straight lines for both data
sets. The values of R are !0.631 and !0.954, for the
present data and for those of FY. A similar treatment
has been applied to the data for SiC and the result is
displayed in Fig. 21. The temperature for the division
of the SiC data was 397 K, and the value of R
improved from !0.563 to !0.824. At this stage, the
division of the anelastic data in this manner is a purely
empirical approach with no physical mechanism
behind it.

The damping data can be analysed, however, in
a different way to yield information on mechanisms.
Thus, the curves in Figs 13—18 have been analysed in
terms of an Arrhenius type equation:

Q~1"Q~1(0) exp(!H/k¹ ) (2)

where Q~1(0) is a reference value of damping, H is an
effective activation energy and k is Boltzmann’s con-
stant. The values of H obtained are listed in Table II
and lie in the range 0.11—0.27 eV/atom for alumina
and 0.09—0.43 eV/atom for SiC. These effective activa-
tion energies are low for ceramic systems. For
example, the activation energy for diffusion of oxygen
in alumina lies in the range 2.5 to 8.2 eV/atom [18, 19]
while that for Al in alumina is 4.9 eV/atom [20]; the
activation energy for the diffusion of carbon in SiC is
near 8 eV/atom [21]. Table IV gives a listing of some

diffusion related mechanisms and their associated
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TABLE IV Diffusion related mechanisms and their associated
activation energies

Mechanism Activation energy Reference
(eV/atom)

Lattice diffusion in Al
2
O

3
5.29 [22]

Sub-boundary diffusion in 8.81 [22]
Al

2
O

3
Oxygen diffusion in 8.15 [18]
single crystal Al

2
O

3
2.50 [19]

Oxygen diffusion in 4.77 [19]
polycrystalline Al

2
O

3
Al in Al

2
O

3
4.94 [20]

Ionic conduction in 0.488—0.740 [23]
SiO

2
—Na

2
O—Al

2
O

3
—ZrO

2
Na` diffusion in 0.05 (localized jumps) [24]
Al

2
O

3
—Na

2
O 0.25 (long-range

diffusion)
K` and Na` diffusion 0.183—0.387 [25]
in Al

2
O

3
—Na

2
O—K

2
O

C in SiC 7.4—8.2 [21]
High temperature back 0.025—0.125 [26]
ground damping
Present results Al

2
O

3
0.11—0.27

SiC 0.09—0.43

activation energies. Although the present values of
H for Al

2
O

3
are consistent with the mechanism of

impurity ion diffusion (K` or Na`), it seems also
likely that for both materials (Al

2
O

3
and SiC) the low

values of H may reflect a contribution from thermal
energy to the damping. The values of k¹ for temper-
atures in the range 300 to 1500 K (the range of interest
here) are 0.025 to 0.125 eV/atom.

4. Summary
From this study of the measurements of the elastic and
anelastic properties of alumina and silicon carbide as
a function of temperature, the following main findings
hold:

1. Young’s modulus (E ) values for alumina and SiC
fit these equations, respectively:

E"438.4!0.01588¹!0.00007926¹2

(298(¹(1473 K) (3)

E"453.3!0.02913¹ (293(¹(1322 K) (4)

where E is in GPa and ¹ is temperature.
2. The Young’s modulus data can be grouped into

a high temperature regime and a low temperature
regime. Thus, the Young’s modulus data for both
materials also fit this equation:

E"E (0)!b¹ exp(!¹
0
/¹ ) (1)

where E (0) is the value of Young’s modulus at 0 K,
and b and ¹

0
(the characteristic temperature) are

empirical constants, found to be 0.270 GPa K~1 and
996 K for alumina, and 0.0455 GPaK~1 and 397 K
for SiC.

3. The ratio of the characteristic temperature
¹

0
and the Debye temperature h

D
for both materials

was found to be near 0.4.
4. For both materials the effective activation energy

for the change in damping with change in temperature

was found to be near k¹, where k is Boltzmann’s
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constant, reflecting the contribution to the damping
from thermal energy. For alumina the value of the
effective activation energy was also consistent with the
mechanism of impurity ion diffusion (K` or Na`).

5. There may be a possibility of grouping the damp-
ing data into a high temperature regime and a low
temperature regime.
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